Spectral Line Observing

- Measurement goals
- Spectral line formation processes
- Line Shapes / Doppler effect
- Spectrometers
- Observing techniques
- Calibration
- Data reduction / Data products
- Data visualization

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Measurement Goals

- What can we learn from radio spectral lines ?
- We can probe the physical, chemical and dynamical conditions of the interstellar matter (ISM) in the Milky Way and in external galaxies.
- Most ISM gas phases produce spectral lines:
 - Cold: 10 K, dense molecular gas (H₂)
 - Cool: 10² K, neutral gas (HI)
 - Warm: 10⁴ K, ionized gas (HII)
 - Hot: 10⁶ K, low-density ionized (SNR bubbles)

ESSEA, Spectral Line Observing, D. Muders

Spectral

Ines

2

2010-09-27

Measurement Goals (ctd.)

- Intensities can tell us about:
 - Gas temperature
 - Energy Sources
 - Gas density
 - Gravity / Cloud Criticality
 - Chemical composition
 - Abundances / Evolutionary State
 - Ionization / Magnetic Fields
 - Cloud Support

Measurement Goals (ctd.)

- Frequencies and line widths can be used to derive:
 - Dynamical models
 - Galaxy and Cloud Rotation
 - Cloud Collapse
 - Protostellar Outflows
 - Redshifts
 - Age
 - Distance

Spectroscopy

Spectroscopy:

Any measurement of a quantity as a function of either wavelength (λ) or frequency (ν), i.e. also of energy (E = $h\nu$).

Spectral Line:

Result of the interaction between a quantum system and a single photon.

How do spectral lines form ?

- Quantum systems (atoms or molecules) can change their states only in discrete amounts of energy ΔE
- The transition between these states leads to emission or absorption of light at a single frequency $v = \Delta E/h$, the so called rest frequency
- Spectrally this transition is seen as a line

Types of Spectra

http://www.astro.columbia.edu/~archung/labs/fall2001/lec04_fall01.html

ESSEA, Spectral Line Observing, D. Muders

MAX-PLANCK-GESELLSCHAFT

MAX-PLANCK-GESELLSCHAFT

Atomic Lines I

 Electronic transitions (e.g. recombination lines (H<n>α, etc.))

ESSEA, Spectral Line Observing, D. Muders

Atomic Lines II

Hyperfine splitting / spin flips (e.g. HI 21 cm line
 → separate talk on Tuesday)

ESSEA, Spectral Line Observing, D. Muders

Molecular Lines I

- Electronic transitions (rather in VIS / UV)
- Rotational transitions (needs dipole, so no H₂ !)

Animations: http://www.shokabo.co.jp/sp_e/optical/labo/opt_line/opt_line.htm

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Molecular Lines I

Animations: http://www.shokabo.co.jp/sp_e/optical/labo/opt_line/opt_line.htm

ESSEA, Spectral Line Observing, D. Muders

Molecular Lines II

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Molecular Lines II

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Interstellar Fingerprints

 Set of all possible lines of an atom or molecule is its personal "fingerprint"

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Interstellar Molecular Zoo

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	13 atoms
H2	C3*	c-C₃H	C5*	C₅H	C6H 2008	CH3C3N	CH3C4H	CH3C5N	HC ₉ N	C6H6* (?)	HC11N
AIF	C₂H	I-C ₃ H	C4H	I-H ₂ C ₄	CH2CHCN 2008	HC(0)0CH ₃	CH3CH2CN	(CH ₃)₂CO	CH3C6H	C2H5OCH3 ?	
ALCI	C20	C3N	C4Si	C2H4*	CH3C2H	сн₃соон	(CH ₃)≥0	(CH20H)2	C₂H₅OCHO 2009	n-C3H7CN 2009	
C2**	C ₂ S	C30	I-C ₃ H ₂	CH3CN	HCsN	C7H	CH3CH2OH	CH3CH2CH0			
сн	CH2	C3S	c-C3H2	CH3NC	CH₃CHO	H ₂ C ₆	HC7N				
сн+	HCN	C ₂ H ₂ *	H ₂ CCN	CH3OH	CH ₃ NH ₂	CH₂OHCHO	C8H				
CN	нсо	NH3	CH4*	CH₃SH	c-C₂H₄O	I-HC6H* (?)	$CH_3C(O)NH_2$				
со	HCO+	HCCN	HC ₃ N	HC₃NH ⁺	H₂CCHOH	СН₂СНСНО (?)	C ₈ H ⁻				
C0+	HCS ⁺	HCNH+	HC₂NC	HC₂CHO	C ₆ H ⁻	CH₂CCHCN	C ₃ H ₆				
CP	нос+	HNCO	нсоон	NH2CHO		H ₂ NCH ₂ CN 2008					
SiC	H2O	HNCS	H ₂ CNH	CsN							
нсі	H2S	H0C0 ⁺ 2008	H ₂ C ₂ O	I-HC4H* (?)							
KCI	HNC	H ₂ CO	H2NCN	I-HC4N							
NH	HNO	H ₂ CN	HNC3	c-H2C30							
NO	MgCN	H ₂ CS	SiH ₄ *	H ₂ CCNH (?)							
NS	MgNC	H₃O ⁺	Н₂СОН+	C5N ⁻ 2008							
NaCI	N2H ⁺	c-SiC3	C₄H 2008								
он	N ₂ O	CH3*	HC(0)CN 2008								
PN	NaCN	C3N ⁻ 2008									
so	ocs	PH₃? 2008									
so+	SO2	HCN0 2009									
SiN	c-SiC2	HOCN 2010									
SiO	C 02*	2009									
SiS	NH ₂										
CS	H3**										
HF	H2D ⁺ , HD2 ⁺										
HD	SICN										
FeO ?	AINC										
02	SINC										
CF ⁺	HCP										
SiH ?	CCP 2008										
PO	AIOH 2010										
ALO 2009	H₂0 ⁺										
0.4+	2010								00/004	•	
2010							WWW.	cdms.de	08/201	0	
CN- 2010									00,202	-	
		160	In)		•						. —
2010-	-09-27	ELS	Ra	ESSEA	Spectral	Line Observ	/ing, D. Mi	uders			17

MAX-PLANCK-GESELLSCHAFT

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Interstellar Molecular Zoo

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	13 atoms
H ₂	C3*	c-C ₃ H	C5*	C₅H	C6H 2008	CH3C3N	CH3C4H	CH3C5N	HC ₉ N	C ₆ H ₆ * (?)	HC11N
AIF	C₂H	I-C₃H	C4H	I-H ₂ C ₄	CH2CHCN 2008	HC(0)0CH3	CH3CH2CN	(CH ₃)₂CO	CH3C6H	C2H5OCH3 ?	
ALCI	CzO	C₃N	C4Si	C2H4*	CH₃C₂H	сн₃соон	(CH ₃)₂0	(CH2OH)2	C2H50CH0	n-C3H7CN 2009	1
C2**	C2S	C30	I-C ₃ H ₂	CH3CN	HC5N	C7H	CH3CH2OH	CH3CH2CH0			
сн	CH2	C3S	c-C3H2	CH3NC	CH₃CHO	H ₂ C ₆	HC7N				
сн+	HCN	C2H2*	H2CCN	СН₃ОН	CH ₃ NH ₂	СН₂ОНСНО	C8H	Λ	<u> </u>	2	
CN	нсо	NH3	CH4*	CH₃SH	c-C2H40	I-HC6H* (?)	CH ₃ C(O)NH ₂	4	5	5	
со	HCO+	HCCN	HC ₃ N	HC₃NH ⁺	Н₂ССНОН	CH₂CHCHO (?)) C ₈ H ⁻				
co+	HCS ⁺	HCNH*	HC₂NC	HC₂CHO	C ₆ H ⁻	CH2CCHCN	C ₃ H ₆				
CP	нос+	HNCO	нсоон	NH2CH0		H2NCH2CN 2008					
SIC	H ₂ O	HNCS	H ₂ CNH	CsN			9				
нсі	H ₂ S	H0C0 ⁺	H ₂ C ₂ O	I-HC4H* (?)	0	10	3				
KCI	HNC	H₂CO	H₂NCN	I-HC4N	9	10					
NH	нио	H₂CN	HNC3	c-H2C30					2		
NO	MgCN	H ₂ CS	SiH4*	H2CCNH (?)							
NS	MgNC	H30+	Н₂СОН*	C ₅ N 2008			6		A shares	•	
NaCl	N2H+	c-SiC ₃	C₄H 2008								
он	N2O	CH3*	HC(0)CN 2008	16							
PN	NaCN	C3N 2008	10	ΞŪ		6	•				
so	ocs	PH₃ ? 2008	TO								
so+	SO2	HCN0 2009				Ethyl f	ormato				
SiN	c-SiC2	HOCN 2010					onnaic				
SiO	C 02*	HSCN 2009		B	Belloche et al. A&A, 499, 215, 2009						
SiS	NH2	00							CAN STATE	S. S.	
CS	H3**	23							· LIB J		
HE	H2D ⁺ , HD2 ⁺										
HD	SICN										
FeO ?	AINC										
02	SINC			Total	of 161	and aquint	tinal				
CF ⁺	HCP			TOLAI	01 104 6	anu coum	ung !				
SiH ?	CCP 2008						•				
PO	AIOH 2010										
AIO	H20+										
2009	2010										
0H ⁺ 2010							\\\\\\\	cdms de	08/201	0	
∝∾- 35	33						~~~~		00/201	•	
2010											
2010-09-27				ESSEA, Spectral Line Observing, D. Muders 18							

MAX-PLANCK-GESELLSCHAFT

Max-Planck-Institut für Radioastronomie

Spectral Line Excitation

- Near HII regions radiatively via UV fields
- In cold molecular clouds via CMB but predominantly via collisions with H₂
- In case of a level inversion one gets a maser (→ see also special maser talk tomorrow)

2010-09-27

Collisional Excitation

MAX-PLANCK-GESELLSCHAFT

Maser Molecules

Molecules that exhibit maser action in celestial objects								
molecule	name	frequency (GHz)	characteristics*					
он	hydroxyl	1.612	о, м					
	п	1.667	о, м					
	"	1.720	0					
H ₂ CO		4.829	0					
сн₃он	methanol	12.178	0					
SiS	silicon sulfide	18.155	с					
H ₂ O	water	22.235	о, м					
NH ₃	ammonia	23.870	0					
SiO	silicon oxide	43.122	м, s, o					
	"	86.243	м, s					
HCN	hydrogen cyanide	89.087	с					

*O means that the maser emission is frequently found in star-forming regions; M, in M stars; S, in S stars; C, in carbon stars

http://www.daviddarling.info/encyclopedia/l/interstellar_maser.html

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Zeeman Effect

- Degenerate energy levels split up if an external magnetic field is applied
- This leads to additional transitions and allows to measure the magnetic field

Kingshuk Majumdar (2000)

ESSEA, Spectral Line Observing, D. Muders

Optical Depth Effects

- Depending on the density and temperature spectral line emission can be optically thin or thick
- In the case of optical depth τ « 1, one can look through a cloud and determine column densities and internal dynamics
- For τ » 1, one can see only the surface of an object. Using radiative transfer one can calculate the cloud temperature

ESSEA, Spectral Line Observing, D. Muders

Line Profile Shape

- Ideal line should be infinitely sharp because there is a fixed energy difference $\Delta E = hv_0$
- Energy uncertainty causes a small broadening, the "natural line width"
- Thermal motion of emitters leads to Doppler shifted line frequencies

ESSEA, Spectral Line Observing, D. Muders

Thermal Broadening

- Considering statistical ensembles one can derive a Gaussian shape for the broadened line
- Only the line-of-sight,
 i.e. the radial
 component adds to
 this effect

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Radial Velocity

- Larger Doppler shifts can occur due to several effects:
 - Galactic rotation
 - Dynamical processes in molecular clouds and stars
 - Expansion of the universe (redshift can be so large that submm lines are shifted to cm wavelengths !)
- Each type of shift creates typical line profile shapes
- We often use radial Doppler velocity as x-axis

Dynamics: Rotation

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Dynamics: Cloud Collapse

http://www.oglethorpe.edu/faculty/~m rulison

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

28

MAX-PLANCK-GESELLSCHAFT

Dynamics: Outflows

Schmid-Burgk et al. LIACo, 29, 193, 1990

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Spectral Instruments

- What does one need to observe radio astronomical spectral lines ?
 - Heterodyne frontend (\rightarrow special talk)
 - Usually a down-converter from observing frequencies to a "low" (0-4 GHz) intermediate frequency (IF) band
 - Spectrometers to analyze the signal
 Will concentrate on spectrometers here

2010-09-27

Spectrometers

- Spectrometers measure the frontend signal in many frequency bins across the available bandwidth
- There are several techniques:
 - Filter banks: Series of analog filters; complex electronics
 - Auto-correlators: Special purpose computers; correlation function of time series signals; low number of bits

2010-09-27

Spectrometers (ctd.)

- More spectrometer types
 - Acousto-optical spectrometers (AOS): Diffraction of laser light at ultrasonic waves in a Bragg crystal; delicate optical setup

 Fast Fourier Transform Spectrometers: High speed ADCs and FPGAs → Development at the MPIfR

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Fast Fourier Transform Spectrometer

XFFTS: 2.5 GHz bandwidth / 32768 channels (ENBW 88.5 kHz)

E2V 5 GS/s 10-bit ADC, XILINX Virtex-6 LX240T [40 nm, 1.0 volt core voltage, >240'000 logic cells, 768 DSP48 slices]

ESSEA, Spectral Line Observing, D. Muders

Observations

- Source signal is partially absorbed by the earth atmosphere
- The atmosphere also radiates itself and thus contributes to the signal

Atmospheric Transmission

Observations

- Source signal is partially absorbed by the earth atmosphere
- The atmosphere also radiates itself and thus contributes to the signal
- The telescope beam picks up ground spillover
- Receiver etc. add a signal too
- Direct measurement therefore yields

$$C_{on} = C_{source} e^{-\tau A} + C_{atm} (1 - e^{-\tau A}) + C_{spillover} + C_{rec}$$

ESSEA, Spectral Line Observing, D. Muders

 To remove the atmospheric and instrumental emissions one observes the target and then a position on sky without astronomical emission

$$C_{off} = C_{atm} (1 - e^{-\tau A}) + C_{spillover} + C_{rec}$$

 The difference of the two measurements contains only the source signal (still weakened by atmospheric absorption):

$$C_{on} - C_{off} = C_{source} e^{-\tau A}$$

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

ESSEA, Spectral Line Observing, D. Muders

2010-09-27

MAX-PLANCK-GESELLSCHAFT

MAX-PLANCK-GESELLSCHAFT

ESSEA, Spectral Line Observing, D. Muders

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

On-Off Alternatives

- On-Off measurements can be taken by moving the telescope between two positions.
- If the source is small, then one can use horn or wobbler switching which is faster. This helps if the atmospheric emission varies quickly.
- One can also measure the "off" at a slightly shifted frequency but pointing to the source. This doubles the actual "on" time and reduces telescope movements.

Frequency Switching

Reference at a slightly different frequency but same position on the target

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Frequency Switching

Reference at a slightly different frequency but same position on the target

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Frequency Switching

Reference at a slightly different frequency but same position on the target

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Observing Patterns

- Most radio receivers are still single pixel or small multi-beam systems
- To cover an extended source area one must observe several spatial offset positions
- Typical patterns are
 - (Rectangular) rasters with half beam spacing
 - (Rectangular) "On-The-Fly" rasters
 - Advanced figures like spirals, Lissajous figures, Rotating bow ties, etc.

ESSEA, Spectral Line Observing, D. Muders

MAX-PLANCK-GESELLSCHAFT

Calibration

- The measurements in arbitrary counts need to be calibrated to physical units
- For spectral lines one usually uses the "Antenna Temperature" scale
- The receiver system is calibrated against "hot" (usually ambient temperature) and "cold" (usually LN₂ @ 77 K) black bodies
- In cm wave receivers one uses a noise diode that was hot/cold calibrated in the lab

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Calibration (ctd.)

- The absorption of astronomical signals needs to be corrected too:
 - Scaling according to measurements of secondary calibrator sources
 - Sky measurements and atmospheric models can be used to derive $\boldsymbol{\tau}$
 - More details in the calibration talk on Thursday

Data reduction

 Atmospheric and instrumental instabilities lead to spectral baseline artifacts

ESSEA, Spectral Line Observing, D. Muders

Data reduction

Data reduction

- Atmospheric and instrumental instabilities lead to spectral baseline artifacts
- Techniques to process spectral line data include:
 - Spectral baseline fits using polynomials
 - FFT analysis to remove sinusoidal components due to standing waves
 - Flagging of very bad data

MAX-PLANCK-GESELLSCHAFT

 Caveat: Must be very careful not to alter the line emission, esp. for broad lines 2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Data Products

- Primary data products are calibrated spectra
- For mapping projects the spatially distributed spectra are interpolated onto a regular grid to make 3D data cubes with two spatial and one spectral axis
- ALMA Pipeline Heuristics development (led by MPIfR) attempts to provide automatic data reduction (also applicable to Effelsberg data)

Spectral Data Visualization

- Usually display maps as false color images and contour plots
- Frequency axis allows for additional analysis, e.g. via so called channel maps or via positionvelocity plots
- Since we have a data *cube*, one can apply 3D rendering techniques but one must be careful interpreting the graphs because of the frequency axis

Channel Maps

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Position Velocity Plots

5

 \cap

-5

5

0

-5

 \cap

 V_{LSR} (km s⁻¹

Gomez's Hamburger (IRAS 18059-3211)

arcsec

Offset

Major Axis

Plot spatial axis against velocity to study cloud dynamics, e.g. **Keplerian rotation**

A. Gomez, CTIO, NOAO, HST, NASA

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

2010-09-27

6

CO 2-1

2008

839-845,

al. A&A 483,

et

Bujarrabal

Data

Model

3D Rendering

2010-09-27

http://am.iic.harvard.edu ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

3D Rendering

http://am.iic.harvard.edu ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Deriving Physical Parameters

- Spectra and data cubes of several transitions are used in conjunction with models to derive physical parameter of the ISM:
 - Optically thin lines (involving isotopologues) to calculate column and volume densities
 - Line Ratios are modeled with chemical networks and radiative transfer programs
 - Spectral signatures of dynamical processes are fitted against the data
 - And many more ...

2010-09-27

ESSEA, Spectral Line Observing, D. Muders

Summary

- Spectral lines provide a wealth of information about the interstellar medium
- Different atomic and molecular processes generate numerous spectral lines in the cm to submm wavelength range
- More than 160 molecules detected in space
- Physical, chemical and dynamical state of interstellar medium can be studied using spectral lines

Happy Observing !

ESSEA, Spectral Line Observing, D. Muders

Max-Planck-Institut für Radioastronomie

Thermal Line Broadening

Since the thermal velocities are non-relativistic, the Doppler shift in the angular frequency is given by the simple form

$$\omega = \omega_0 \left(1 \pm \frac{v}{c}\right)$$
 $\omega_0 = \text{frequency for an} \\ \text{atom at rest}$

From the Boltzmann distribution, the number of atoms with velocity v in the direction of the observed light is given by

$$n(v)dv = N_{\sqrt{\frac{m_0}{2\pi kT}}} e^{-m_0 v^2/2kT} dv$$

N = total number of atoms $m_0 = \text{atomic mass}$

The distribution of radiation around the center frequency is then given by

$$I(\omega) = I_0 \exp\left[\frac{-m_0 c^2 (\omega_0 - \omega)^2}{2kT\omega_0^2}\right]$$

http://hyperphysics.phy-astr.gsu.edu/hbase/atomic/broaden.html

ESSEA, Spectral Line Observing, D. Muders

62

2010-09-27

Antenna Temperature

Antenna temperature is a measure of signal strength in radio astronomy. It is defined as the temperature of a black-body enclosure which, if completely surrounding a radio telescope, would produce the same signal power as the source under observation. Antenna temperature is a property of the source, not of the antenna itself.

$$T_{A} = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} R(\theta, \phi) T(\theta, \phi) \sin \theta d\theta d\phi$$

 $R(\Theta, \Phi)$ is the antenna pattern.

