Reduction and Analysis Techniques Spectral lines

30.09.2010
Marion Wienen

Observing Methods

position switching

advantages: good baseline disadvantage: decreased s / n ratio,
frequency switching
$(2,2)$

total time on source \square increased s/n ratio
baseline variations
offset must be free of emission

Reduction: Step 1

Frequency switching

folding different phases

using shift and subtract algorithm

Reduction: Step 2

Baseline subtraction

- fluctuations in the baseline
setting a window around the spectral line, subtraction of a polynomial of order 3 to 7
Polynomial $P(x)=\sum_{i=0}^{n} a_{i} x^{i}, n \geqslant 0$
least square algorithm: estimation of unknown parameter a in $f(x ; a)$ predicting the true value of y for any x
- N known x values,
- corresponding measurements y,
- prediction $f(x ; a)$, expected error σ

$$
\chi^{2}=\sum_{i=1}^{N}\left(\frac{y_{i}-f\left(x_{i} ; a\right)}{\sigma_{i}}\right)^{2}
$$

choose a value of a, which gives the smallest χ^{2}

Reduction: Step 2 Baseline subtraction

Do not subtract a polynomial of high order!

Ammonia HFS

Megamaser
NGC4258

Reduction: Step 3
 Gauss Fit

Gaussian function: $\quad f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$
with the expected value μ and the variance σ^{2}
Fitting:

$$
f(x, A, B, C)=A e^{-\left(\frac{x-B}{C}\right)^{2}}
$$

use of least square algorithm: $\quad x^{2}=\sum_{i=1}^{N}\left(\frac{y_{i}-f\left(x_{i}, A, B, C\right)}{\sigma_{i}}\right)^{2}$

Reduction: Step 3
 Gauss Fit

Gaussian function with N components: $\quad f\left(x, A_{i}, B_{i}, C_{i}\right)=\sum_{i=1}^{N} A_{i} e^{-\left(\frac{B_{i}-x}{C_{i}}\right)^{2}}$

- 2 components:

- further iterations for Hyperfine components

Analysis Line parameter

Fitting of spectra:

- velocity v - linewidth Δv - line temperature $\mathrm{T}_{\text {мв }}$ - optical depth τ

velocities: - radial motion of the source with respect to the observer
- to calculate kinematical distances using rotation curve
optical depth: for $\tau<1 \quad \frac{T_{M B}(J, K, m)}{T_{M B}(J, K, s)}=\frac{\tau(J, K, m)}{a \tau(J, K, m)} \quad$ for $\tau>1 \frac{T_{M B}(J, K, m)}{T_{M B}(J, K, s)}=\frac{1-e^{-\tau(J, K, m)}}{1-e^{-a \tau(J, K, m)}}$ with $\mathrm{a}=0.22,0.28$ (Ho \& Townes, 1983)
- to obtain the population of an energy level

Analysis Line parameter

linewidth: $\Delta v_{\text {therm }}=\sqrt{\frac{8 \ln (2) k T_{k i n}}{m}} \quad \begin{aligned} & \text { with the Boltzmann constant } \mathrm{k} \text {, kinetic temperature } \mathrm{T}_{\text {kin }} \text { and } \\ & \text { mass of the molecule } \mathrm{m}\end{aligned}$
comparison with observed linewidth $\Delta \mathrm{v}_{\text {obs }}$:

$$
\Delta v_{\text {ntherm }}=\sqrt{\Delta v_{o b s}^{2}-\Delta v_{\text {therm }}^{2}} \quad \text { nonthermal component }
$$

large linewidth might - hint at turbulences within the observed object, e.g. star forming regions

- result from clumping within the beam
- be due to velocity gradients due to rotation of a cloud, galaxy

Analysis Line parameter

line temperature: - give the intensity of the observed transition

- ratio of T_{MB} of different rotational levels gives the gas temperature of a source
- together with distances necessary for mass and luminosity estimation
- excitation temperature $T_{e x}=\frac{T_{M B}}{1-e^{-\tau}}+2.7 \mathrm{~K}$
beam filling factor: $\eta=\frac{T_{e x}}{T_{k i n}}$
fraction of the beam filled by the observed source

Analysis Mapping

Thanks for your attention!

