Reduction and Analysis Techniques -Spectral lines

30.09.2010 Marion Wienen

Observing Methods

baseline variations

disadvantage: decreased s/n ratio,

offset must be free of emission

Reduction: Step 1

using shift and subtract algorithm

Frequency switching

Reduction: Step 2 Baseline subtraction

- fluctuations in the baseline

setting a window around the spectral line, subtraction of a polynomial of order 3 to 7 Polynomial $P(x) = \sum_{i=0}^{n} a_i x^i$, $n \ge 0$

least square algorithm: estimation of unknown parameter a in f(x_i;a) predicting the true value of y for any x

- N known x values,
- corresponding measurements y,

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{y_{i} - f(x_{i}; a)}{\sigma_{i}} \right)^{2}$$

- prediction f(x;a), expected error σ

choose a value of a, which gives the smallest χ^{2}

Reduction: Step 2 Baseline subtraction

Do not subtract a polynomial of high order!

Ammonia HFS

Megamaser

Reduction: Step 3 Gauss Fit

Gaussian function:

$$f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

with the expected value μ and the variance σ^2

Fitting: $f(x, A, B, C) = A e^{-\left(\frac{x-B}{C}\right)^2}$

use of least square algorithm:

$$\chi^{2} = \sum_{i=1}^{N} \left| \frac{y_{i} - f(x_{i}, A, B, C)}{\sigma_{i}} \right|^{2}$$

Reduction: Step 3 Gauss Fit

Gaussian function with N components:

 \cdot 2 components:

 further iterations for Hyperfine components

Analysis

Line parameter

velocities: - radial motion of the source with respect to the observer

- to calculate kinematical distances using rotation curve

optical depth: for
$$\tau < 1$$
 $\frac{T_{MB}(J, K, m)}{T_{MB}(J, K, s)} = \frac{\tau(J, K, m)}{a\tau(J, K, m)}$ for $\tau > 1$ $\frac{T_{MB}(J, K, m)}{T_{MB}(J, K, s)} = \frac{1 - e^{-\tau(J, K, m)}}{1 - e^{-a\tau(J, K, m)}}$
with a = 0.22, 0.28 (Ho & Townes, 1983)

- to obtain the population of an energy level

Analysis Line parameter

comparison with observed linewidth Δv_{obs} :

 $\Delta v_{ntherm} = \sqrt{\Delta v_{obs}^2 - \Delta v_{therm}^2}$ nonthermal component

large linewidth might - hint at turbulences within the observed object, e.g. star forming regions

- result from clumping within the beam
- be due to velocity gradients due to rotation of a cloud, galaxy

Analysis Line parameter

line temperature: - give the intensity of the observed transition

- ratio of $\mathsf{T}_{_{\rm MB}}$ of different rotational levels gives the gas temperature of a source

- together with distances necessary for mass and luminosity estimation

- excitation temperature
$$T_{ex} = \frac{T_{MB}}{1 - e^{-\tau}} + 2.7 K$$

beam filling factor :
$$\eta = \frac{T_{ex}}{T_{kin}}$$

fraction of the beam filled by the observed source

Analysis Mapping

Thanks for your attention!