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Black Body and Rayleigh-Jeans
Approximation
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Hertzsprung-Russel Diagram
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Black Body Radiation
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Rayleigh-Jeans Approximation
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Rayleigh-Jeans Approximation

e Consequences:
— Radio astronomical photons carry tiny amounts of energy

— Their wavelengths are much longer than the size of atoms |
molecules and dust within the interstellar/intergalactic medium as
well as the Earth atmosphere. Accordingly Rayleigh-Scattering (A
» d) is of marginal importance.

e The radio sky is always dark
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The Radio Sky
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Rayleigh-Jeans Approximation

e Consequences:
— Radio astronomical photons carry tiny amounts of energy

— Their wavelengths are much longer than the size of atoms |
molecules and dust within the interstellar/intergalactic medium as
well as the Earth atmosphere. Accordingly Rayleigh-Scattering (A
» d) is of marginal importance.

e The radio sky is always dark

— The low photon energy allows to apply Gaussian statistics ! We
always detect with radio astronomical receivers a high number of
photons

— The low photon energy makes the life easy, because we can
approximate the Planck law via the Rayleigh-Jeans Ansatz
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Rayleigh-Jeans Approximation
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Rayleigh-Jeans Approximation
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Rayleigh-Jeans Approximation
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Rayleigh-Jeans Approximation
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Basics of radio telescopes and the
radio radiation

universitétbonnl



Essentials |

* The separation between radio source and telescope is extremely
large!

— We can apply the ,far field* approximation, that makes the life pretty
easy

universitétbonnl



Far Field Approximation
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« Left: Anideal telescope with a constant sensitivity across the whole
aperture. No secondary mirror degrades the illumination of the primary

reflector.

* Right: The image of an unresolved object yield for an ideal telescope
aperture the so-called Airy-pattern. The with of the central maximum
and the separation between the 2nd order maxima depend of the

wavelength and define the angular resolution of a telescope (6 = MIZ"‘
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Far Field Approximations

The sensitivity pattern of a real
radio telescope is a 3-D
structure. The main beam
defines the angular range with
the highest sensitivity. The
width of the main beam
depends on the size of the
telescope and the
observational wavelength.

The relative sensitivity
between the main beam and
the so-called side lobes (Airy
pattern) is determined by the
geometry of the radio dish.
Typically about 72% of the
total power received by the
telescope enters the system
via the main beam

http://www.stsm.info/dipl/dipl_3.html
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Essentials |l

* In radio astronomy we always sample coherent parts of the
electromagnetic wave

— We restore amplitude and phase of the wave
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Electromagnetic wave
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Information on the astronomical source we gain nearly exclusively via
photons <-> electromagnetic waves

The Poynting-vector describes the density and direction of the
electromagnetic wave.

In radio astronomy we measure the amplitude and the phase of each
individual wave front.

In radio astronomy we observe very often ,forbidden transitions* Ieadir'.1
long life times t and hence c-t = . long coherence times. . . citstbonn



Essentials 111

« Radio waves trace the cold phase of the Universe

hy _ 66700 JE0O100 Hz
k 1.38010*°JK™*
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T(45(hm): 667010°*J3$16.710"Hz ~ 32 000K
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Exploring the cold universe through a
warm window
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The Earth atmosphere

The Greenhouse Effect

Some of the solar
radiation is
reflected by the
atmosphere and
the Earth's surface

Some of the
infrared radiation
passes through
the atmosphere
and out into space

Solar radiation

passes throug" ’

bsorbed by th house
Ea?‘t?‘n’s Su,-fgcee Radiation is converted to heat energy, causing
the emission of longwave (infrared) radiation

back to the atmosphere
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Energy gain and loss
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Windows to the Universe
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Attenuation of radiation

e The composition, temperature and
climatic  condition of the radio
astronomical site is of high importance
for the scientific yield of a telescope [

- Green Bank

e Shown on the right hand side is the Zenith Opacity
opacity of the earth atmosphere for a | TOompe
cm-wave radio telescope at an low - 55% cloud cover
altitude site i /

 Molecular oxygen has a permanent
magnetically dipole moment between 52
and 68 GHz and attenuates all radio -
radiation from space. The width of the
atmospheric lines depend on the air
pressure at the site.

« At 22 GHz the attenuation is due to
water vapor . The width of the line is F
about 4 GHz. 0.001 £i if

01 F

001

total E—
hydrosois ~ -——-

oxygen -—-
dry air —_— - =
e Hydrosols are tiny raindrops (r ~ 0.1 | , watervapor
mm) which scatter the radio wave 0 20 40 60 80 100 120
. ) \ i
following the Rayleigh scattering http://vvww.cv.nrao.edﬁ/t(:ouzr)se/astr534
process.
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Kirchhoff Law
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According to the Kirchhoff law on
thermal radiation exists a direct
relation between the ability to
absorb electromagnetic radiation
and the emission of radiation.

In thermodynamic equilibrium  the
absorbed amount of energy is
equal to the re-radiated one!

The molecules of the Earth
atmosphere re-radiate the power of
energy they gained from the Sun.

This thermal radiation can be
approximated by a black body of
low temperature. This radiation
enters the receiver of the radio
dish and adds the thermal noise to
the observed radiation of the
astronomical source.

Seasons are important for the
guality of the radio astronomical

measurement!
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Consequences

Tnoise = i
K
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Consequences

r R
noise K
Tws - TCMB +Tsource +Tatmosphere +Treceiver
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Consequences

r R
noise K

Tsys - TCMB +Tsource +Tatmosphere +Treceiver

Tsource << Tsys

« Astronomical sources down to the mK/uK-level are detectable
while the system temperature of the superposition of all thermal
radiating sources is up to a few hundred Kelvin!
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The radioastronomical receiver and the
radiometer equation
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Radiometer Equation

+2

V/<V>

P(V/<V>)
P(V/<V>)

0 v}i.:m 2 http://www.cv.nrao.edu/course/astr534

« Left: 50 independent wave trains have been integrated. The
expectation value for the voltage is 1 V.

* Right: statistical average of 100 wave trains is displayed. The
expectation value is much better defined (narrow Gaussian

distribution).
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Radiometer equation

T

SYyS

- JAvT

O

* The limiting sensitivity  of a radio astronomical receiver can be
calculated via the radiometer equation

« Example continuum radiation: we integrate for 30 seconds the
radiation of a source using a bandwidth of 100 MHz. During that
integration time, we sample the wave train 30s*100-10° Hz
=3-10°. In the very limit we can determine temperature
fluctuation of 1.8-10°*T.

 Example spectral line: we integrate for 30 seconds using a
channel-width of 6 kHz, we find 30s*6-10°Hz -> 2.3-10%*T,
with T... = 40 K we derive 92 mK as temperature limit for the line "

sys
emission. universitatbonn



Sensitivity of a radio telescope
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Radiation temperature: Mars

* Radiation temperature from
M LMars = A\/Iars |:|LSJn
ars 4770 (152* 1AE)?

_ Ay 2 4
L. = 4770R2, Co T,
M AT (152* 1AE)? R =
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Radiation temperature: Mars

- Radiation temperature from A,
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Radiation temperature: Mars

* Radiation temperature from
M LMars = A\/Iars DLSJH
ars 4770 (152* 1AE)?
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Radiation Temperature to Flux

« Mars has an angular extent of 18“. What is the radiation power at
18 GHz?

2k OOT [?

CZ

S=B,Q= OrO(R)
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Radiation Temperature to Flux

« Mars has an angular extent of 18“. What is the radiation power at
18 GHz?

2

S=B,Q = 2 DTZD’ OrO(RY
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Radiation Temperature to Flux

« Size matters! Brightness temperature and flux for a 4-m dish

— I:)received — 2|:k[T[K]
A\iﬁ ) Ssource Ssource [Jy]
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Radiation Temperature to Flux

« Size matters! Brightness temperature and flux for a 4-m dish

—_ I:)recewed - 2|:k |:T[K]
A\iﬁ Ssource source [‘-J y]
TIK] _
source [Jy] 2 Dk
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Radiation Temperature to Flux

* Size matters! Brightness temperatur and flux for a 4-m dish

— I:)recewed — 2|:k[T[K]
'Abﬁ SSOUI’CG source [J y]
TlK] _
SOUI‘CG[Jy] 2|:|k
TK] _ n{2m*0.7) [110‘26{%}

Ssource [Jy] 2 |:|1_38 D_O_23|:‘]:|
K

TlK] 455&0‘3{5}
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universitétbonnl



Brightness Temperatur:

 What is the brightness
temperature of a 1 Jy source
received by a 4-m dish?

Kelvin per Jansky

—_ I:)received — ZEkET[K]
Aaﬁ B SSOUI’CE SSOUTCE[Jy]
TK] _ Ag
S&)UI’CG.‘]y] ZDk
T[K] _  m(2m*0.7 510‘26[%}
Ssource[‘]y] 2 Dl_38 D_O‘23|:Ji| m
K
K

SLK[]M - 455mosL_y}

The brightness temperature of Mars received by a 4-m dish is

455107 LS [13.38Jy=60.8mK

Jy
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Detection limits and integration time

T
AT =—L—=

AV T
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Detection limits and integration time

T

AT =—2X_ =
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Detection limits and integration time

AT IS
= —
VAV Or
Tos ) - 1
I = [—
AT AV

A 4-m sub-mm telescope at 100 GHz using a continuum backend
with 30 MHz bandwidth and Tsys = 200 K should detect the Mars
radiation at 100

T_( 200K T* 1
63mK/10) 30010° Hz

T =37Sel ,
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Single Dish vs. Radio Interferometers
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Confusion limit
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Confusion limit
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Confusion limit

* A telescope with an angular resolution of better than 2“
can watch through the Universe !

* A telescope with an angular resolution less than 2 will
finally limited by the superposition of the individual Airy-
disks of the objects: it is confusion limited

« All single dish radio telescope are confusion limited!

« Continuum maps of single dish radio telescopes do not
show up with increasing observing time with fainter details.
The ,noise” of these maps is not noise but real structures
produced by the emission of objects at cosmological
distances

 Radio interferometers will overcome this limitation !
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Why should we care in the ,era of
arrays” about single dishs?
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The value of single dish radio telescopes

e Large single dish radio telescopes offer a huge sensitivity
In comparison to radio interferometers.

* The size of the individual radio interferometer dish
determines via K/Jy the sensitivity limit of the correlated

. . .o -l
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Wikipedia
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The value of single dish radio telescopes

« A sum of the collecting area of a radio interferometer might
be larger than that of a single dish, but its sensitivity is still
lower due to the size of the individual dishes
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The value of single dish radio telescopes

* Radio interferometer do not allow today to cover a broad
range of receivers at different wavelength and multi-feed
technology. Expensive receivers (cooled ones) want be
standard equipment for radio interferometers but single

dishes "
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The value of single dish telescopes

e Large single dishs offer a high number of receivers in their
primary or secundary foci
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Effelsberg secondary focus
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The value of single dish telescopes

e Large single dishs offer a high number of receivers in their
primary or secundary foci

— This allows to measure the spectrum of a source within a few
minutes of observing time on mJy level within a single observing
run

— Time variability on scales of days and hours can be tracked
accurately
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The value of single dish telescopes

« The image reconstruction of a radio interferometer depends
not only on the optics of the radio dishes and the
computing power of the correlators but on the UV-
coverage!
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Point Response Function
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Selection of science by radio
Interferometry: an example
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Comparison on sensitivity
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Galactiec Latitude

Galactic Longitude

© Roland Kothes
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Galactic Latitude

Galactic Longitude

© Roland Kothes
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Summary

Single dishes offer highly sensitive radio observations
Expensive receiver technology can be used

Multi-frequency observations are feasible due to the high
number of receivers in the secondary and prime focus

Single dish telescope measure large scale intensity
distributions while the radio interferometer telescopes are
,blind* for this radiation

Single dish’s are strongly confusion limited

The future is the combination of single dish (filled
apertures) radio interferometer data (Square Kilometer

Array)
universitétbonnl



