neutral hydrogen observations

biased overview of HI measurements basics to proceed with an idea to a proposal

Hans-Rainer Klöckner

history

Hydrogen (lightest element, ~76% baryons of the Universe)

van de Hulst 1944 predicted detection of the hyperfine levels of the ground state

21 cm / 1420.40575177 MHz

history

first extragalactic HI observations (Keer et al. 1953)

KERR, HINDMAN, AND ROBINSON © CSIRO Australia • Provided by the NASA Astrophysics Data System RIGHT ASCENSION Fig. 1.—Contours of integrated brightness. (Unit = 10^{-16} W m⁻² sterad⁻¹.) The dashed line

approximately encloses the areas within which radiation was detected.

Fig. 2.-The portion of the southern sky containing the Magellanic Clouds. It covers the same area as the contour diagrams.

Fig. 3.-Contours of observed mean radial velocity, in kilometres per second.

Fig. 4.-Contours of residual mean radial velocity, after removal of galactic rotation and solar motion.

Aust. J. Phys., Vol. 7, No. 2

Galactic HI

Leiden - Argentina - Bonn (Kalberla et al.)

http://www.astro.uni-bonn.de/~webaiub/english/tools_labsurvey.php

Effelsberg-Bonn-HI- Survey (EBHIS) under construction

Galactic HI

Galactic HI

 $v_{\rm DEV} = v_{\rm LSR} - v_{\rm min} \mbox{ if } v_{\rm LSR} < 0; \quad v_{\rm DEV} = v_{\rm LSR} - v_{\rm max} \mbox{ if } v_{\rm LSR} > 0.$

ISM

CNM - cold neutral medium Narrow absorption features in front of strong galactic sources T_{kin_gas} < 50 K WNM - warm neutral medium located close to galactic plane T_{kin_gas} > 200 K WIM - warm ionized medium Halpha emission in Galaxy widespread T_{kin_gas} > 10⁴ K HIM - hot ionized medium diffuse soft X-ray emission & O IV line T ~ 10⁶ K

WHIM - warm-hot intergalactic medium

Heating: convert external energy into thermal motion of the gas Cooling: collisional excitation (by heavy elements)

HI/spectral line talk

Zwaan 2008

VLA D, C, B array

measurements

measurements

HI absorption

HI Zeeman

magnetic field measurements Magnetic $\Delta E = \frac{e}{2m} (\vec{L} + 2\vec{S}) \cdot \vec{B} = g_L \mu_B m_j B$ interaction energy 0 mon NGC 1275 -10.15 Intensity (Jy beam⁻¹) -2 -3 0.1 F I=(RCP+LCP)/2 0.02 V=(RCP-LCP)/2 0.01 0.05 0 -0.01 $dI/d\nu$ scaled by B₁₀₀=-21.5 μ G -0.02 0 مراريا مراريا مراريا مراري 8100 8150 $v_{\mbox{\tiny HFI}}~(\mbox{km s}^{-1})$ 8100 8150 Sarma et al. 2005 ${\rm v}_{\rm HEL}~({\rm km~s}^{-1})$ $N(\text{H I})/T_s = 4 \times 10^{18} \text{ cm}^{-2} \text{ K}^{-1}$ $B_{\rm los} = -21.5 \pm 6.5 \ \mu {\rm G}$

recapitulation

Tully-Fisher relation (1977; spirals L ~ $\Delta v^{\beta} \beta$ =3.0-4.2)

smallest galaxy in the local group $10^5 M_{o}$: HI 80% Stars 20 % baryons

low mass HI

HI simulations

0

0

2

1

З

missing baryons in cosmic web

WHIM?

The M31 – M33 filament (Braun et al. 2004)

The bridge might be the first detection of the "cosmic web"/ WHIM in HI emission

HI cosmic web

6

 $\log \rho/\overline{\rho}$

(no velocity disturbance of HI by shock heated ionized matter condense in galaxies)

Since measured signals are weak, we need independent redshift measurements of the

<u>Step 1:</u> Identify locations of galaxies with known redshifts in data-cube

Since measured signals are weak, we need independent redshift measurements of the

Since measured signals are weak, we need independent redshift measurements of the

$$M_{HI}$$

$$3 4 5 6 7 8 9 9 11 12 13 14 15 16 V$$

N

2

$$\frac{M_{HI}}{M_{sun}} = \frac{236}{(1+z)} \left(\frac{S}{mJy}\right) \left(\frac{d_L}{Mpc}\right)^2 \left(\frac{V}{km/s}\right)$$

Using the known optical redshifts, shift spectra to a common frequency/velocity:

Statistical multiplexing

•Method 3:

•Shift spectra to common v and concatenate with noise

The different shifting methods result in slightly different weighted average spectra:

Statistical multiplexing

• Weight by 1/RMS or 1/RMS² of each spectrum:

•However...

- •In region of interest 3 methods very similar
- •Gives handle on systematics

stacking experiments

Previous results

Stacking experiments at a range of redshifts have not yet produced a statistically robust HI signal...

- (2001) Chengalur et al.
- Telescope: ATCA
- Target: Abell 3128
- **z** = 0.06
- Control experiment:
 - Use spectra, but shift with randomised redshifts
- Signal strength: 4σ

Previous results

Stacking experiments at a range of redshifts have not yet produced a statistically robust HI signal...

- (2007) Lah et al.
- Telescope: GMRT
- Target: Field galaxies (Fujita Hαemitters)
- **z** = 0.24
- Control experiment:
 - Simulated artificial galaxies with random positions and redshifts, shifted and co-added
- Signal strength: 2.6σ

Previous results

Stacking experiments at a range of redshifts have not yet produced a statistically robust HI signal...

- (2007) Verheijen et al.
- Telescope: WSRT
- Target: Abell 963 & Abell 2192
- **z** = 0.206
- Control experiment:
 - Stack spectra from 8 spatially offset positions (shifted to the same velocity)
- Signal strength: not quoted

HI at z = 1

stacking experiments

Cosmos field

improved GMRT calibration scheme rms will drop by a factor of \sim 2-3 and using 119 redshift by factor of in total \sim 6-7

get your hands dirty

LAB Survey search results

http://www.astro.uni-bonn.de/~webaiub/english/tools_labsurvey.php

	RA	Dec	1	b	N _H ,
Selected position:	17 ^h 17 ^m 0 ^s	-1° 47' 0"	20.00°	20.00°	0.973·10 ²¹ cm ⁻²
Nearest position:	17 ^h 17 ^m 0 ^s	-1° 47' 0"	20.00°	20.00°	0.973·10 ²¹ cm ⁻²

You can » download the spectrum as an ASCII file with two columns separated by tabs (for Windows use WORDPAD). The first column gives the radial velocity in the LSR frame in km/s. The second column contains the corresponding brightness temperature in K.

get your hands dirty

http://www.atnf.csiro.au/research/multibeam/release/

from a genius idea to a proposal

- is it a new approach?
- check literature:
- astro-ph http://xxx.lanl.gov/archive/astro-ph
- ADS http://adsabs.harvard.edu/abstract_service.html
- www-search engine

data archives:

- VLA, VLBA, GBT <u>http://archive.cv.nrao.edu/</u>
- GMRT
- EVN
- ATNF
- MERLIN

http://ncra.tifr.res.in/~gmrtarchive/

http://archive.jive.nl

http://atoa.atnf.csiro.au/

http://www.merlin.ac.uk/archive/

get your hands more dirty

observable?

- How strong is your source ? (Jy, mJy, μJy, nJy)
- Frequency range (< 300 MHz lonosphere >15 20 GHz Troposphere)
- HI at redshift 1 : v_{obs} = 1420.4/2 = 710.2 MHz

http://nedwww.ipac.caltech.edu/forms/calculator.html

observable at the observatory

altitude(median) = 90° - |L - Dec|

L = latitude observatory Dec = source declination

get your hands more dirty

band / velocity

line width versus bandwidth

• redshift:
$$z = v_{obs} / v_{restframe}$$
 - 1

velocity definition

$\nu = \nu_0 \frac{\sqrt{1 - \frac{v}{c}}}{\sqrt{1 + \frac{v}{c}}} .$
$\frac{v}{c} = \frac{\nu_0^2 - \nu^2}{\nu_0^2 + \nu^2} .$
$\frac{v_{\rm radio}}{c} = \frac{\nu_0 - \nu}{\nu_0} . \label{eq:vradio}$
$rac{v_{ m optical}}{c} = rac{ u_0 - u}{ u} .$

Table 11-1. Velocity Rest Frames Derived from the Topocentric System

~		
Rest	Corrected	Amplitude of
Frame	for	Correction, km s^{-1}
Geocentric	Earth rotation	0.5
Earth-Moon Barycentric	Effect of the Moon on the Earth	0.013
Heliocentric	Earth's orbital motion	30
Solar System Barycentric	Effect of planets on the Sun	0.012
Local Standard of Rest	Solar motion	20
Galactocentric	Milky Way rotation	230
Local Group Barycentric	Milky Way motion	~ 100
Virgocentric	Local Group motion	~ 300
Microwave Background	Local Superclucster motion	~600

CAUTION need to get that right!

[Westpfahl; Chapter 11, Synthesis Imaging in RADIO ASTRONOMY II]

sensitivity image / baseline

eq

[Wrobel & Walker; Chapter 9, Synthesis Imaging in RADIO ASTRONOMY II]

A) / $(2k_{\rm B})$

System Equivalent Flux Density

$$SEFD = rac{T_{
m sys}}{K}$$
 $K = (\eta_{
m a}$ equ. (9-5)

A = AreaK_b= Boltzmann η_a = efficiency η_s = losses in electronics τ_{acc} = integration time [s] Δv = bandwidth [Hz]

Baseline sensitivity for one polarization

$$\Delta S_{\rm ij} = \frac{1}{\eta_{\rm s}} \sqrt{\frac{T_{\rm sysi} \, T_{\rm sysj}}{2 \, \Delta \nu \, \tau_{\rm acc} \, K_{\rm i} \, K_{\rm j}}} \tag{9-13}$$

or in terms of the SEFDs defined in Equation 9–5:

$$\Delta S_{\rm ij} = \frac{1}{\eta_{\rm s}} \sqrt{\frac{SEFD_{\rm i}\,SEFD_{\rm j}}{2\,\Delta\nu\,\tau_{\rm acc}}} \tag{9-14}$$

Image sensitivity for one polarization

$$\Delta I_{\rm m} = \frac{1}{\eta_{\rm s}} \frac{SEFD}{\sqrt{N(N-1)\,\Delta\nu\,t_{\rm int}}}.$$
(9-23)

Divide by square root 2 for 2 polarization !

Feasibility

angular resolution = $1.02 \ \lambda / D$ [halve power beam width] interferometer e.g. 1.4 GHz ~ 21 cm; 10 km baselines: 1.02 0.21/10000 * 360/(2 pi) * 3600 = 4.4 arcsec

field of view [FoV] = $1.22 \lambda / D$

[Napier, Chapter 3, page 41]

minimum brightness temperature

$$T_{\rm b,min} = \frac{2 \ln 2}{\pi} \frac{c^2}{k_{\rm B}} \frac{\Delta I}{\nu^2 \, \theta_{\rm HPBW}^2},$$
 (9–27)

VLBI needs strong sources emission on mas scales

Feasibility - calibrators

calibrators:

4 absolute amplitude calibrator know 3C147, 3C48, 3C286 (~few percent polarized), 1934-638 phase-calibrator should be a point source ! HI Galactic calibrators S6, S7, S8

data base:

VLA - http://www.aoc.nrao.edu/~gtaylor/csource.html

NVSS - http://www.cv.nrao.edu/nvss/

VLBA - http://www.vlba.nrao.edu/astro/calib/index.shtml

proposal

- What do you want to do
- Why is that of interest
- Do you have a backup if the signal is not detected

Proposal deadlines [no liability]

Effelsberg, EVN, VLBA			
& VLBI	1st Februray, June and October		
WSRT	15th September next March 2010		
http://www.astron.nl/radio-observatory/pc-pages/wsrt-call-proposals/wsrt-call-proposals			
VLA	1st and 1st October		
GMRT	2 times a year http://www.ncra.tifr.res.in/~yogesh/quickstartguide.html		
MERLIN	15 th March & 15th September		
ATNF	15 th June 15th December		

get your hands more dirty

C Q- vla proposal

https://my.nrao.edu

ttp://email.t-online.de/ https://sam....e.com/login BBC - Homepage SKADSwiki Schlagzeilen...Nachrichten

000

m #

+ Ahttps://my.nrao.edu/

proposal tools - online

http://proposal.mpifr-bonn.mpg.de/

next proposal deadline is

1st October

are you ready?

literature

Tools of Radio Astronomy

Synthesis Imaging in radio astronomy

Interferometry and Synthesis in Radio Astronomy

