

Bonn/Effelsberg - Sep 27 to Oct 1, 2010

Welcome!

- Radio waves penetrate dust: e.g. view into inner Galaxy
- Sharpest images in all astronomy
- Gives vastly different view of universe, e.g.

- Discovery of new objects!

Radio Astronomy

Most of the fundamental astrophysical discoveries of the last century were made by radio astronomers, e.g.

Pulsars Gravitational waves Extra-solar planets Cosmic Microwave Background Quasars and radio galaxies Gravitational lenses Jets and super-luminal motions Dark matter Interstellar molecules Masers and megamasers

High precision fundamental physics

- More than "astronomy" astrophysics & fundamental physics
 - Example: Measuring the cosmos

The Universe...

- ... is 13.75 ± 0.13 Billion years old
- ... flat to a measuring accuracy of better than 1%
- ... only 4.49±0.28% consists of baryons
- ... but 73.31±0.38% is due to "Dark Energy"

Is general relativity correct?

High precision fundamental physics

More than "astronomy" - astrophysics & fundamental physics
Example: Using natural cosmic clocks

Orbit shrinks every day by 7.42±0.09 mm

*"*Movement of Earth at <10⁻¹⁴ m level!

Karl Jansky (1905–1950)

Discovered cosmic radio waves in 1933, while hunting interfering "static", for Bell Telephone Labs.

"Merry-go-round" antenna in New Jersey, running on wheels from model-T Ford.

14.5-m wavelength

Most static comes from the centre of the Milky Way.

Grote Reber (1911-2002)

Home-made dish to follow-up Jansky's discovery.

1938 Confirmation at 1.9-m wavelength.

Published first radio maps of the Milky Way.

First Day at Jodrell Bank

Bernard Lovell established his experimental station south of Manchester, in December 1945.

Radio/radar equipment from WW2 used to search for the origin of false radar echoes: cosmic rays? 1946: echoes

Transit Telescope

Jodrell Bank 218-foot (66m) transit telescope, built to look for weak radio emission from cosmic rays, discovered M31 in 1950.

The first extragalactic radio source: a large galaxy like our own, at a distance of 2 million light years.

The Lovell Telescope (MkI)

The first big dish: a 250-ft (76m) fully steerable radio telescope built 1952-1957.

The dish was redesigned during construction, so that it could observe the 21-cm hydrogen line.

90 miles of scaffolding were used.

Lovell 76-m

The Big Dishes

The Big Dishes

Effelsberg 100-m

The Big Dishes

Greenbank 100m x 110m

The Big Dishes

Nancay: 100-m equivalent

The Big Dishes

Arecibo: 300-m

The Big Dishes

Sardina: 64-m - yesterday!

The Big Dishes

Parkes: 64-m

Radio Astronomy Sensitivity

60 dB improvement in 40 years: $1 \mu Jy = 10^{-32} W m^{-2} Hz^{-1}$

New telescopes mostly Arrays and interferometers

If your science requires the large scale structure, there's probably

NO ALTERNATIVE

to including Single Dish data

For both resolution and large-scale structure you need to combine single dish and interferometer data.

Single Dish Observing

- Good response to small spatial frequencies
- Sensitivity:
 - Sensitivity in **Jy** (point source) depends just on **collecting area**, SD or Interferometer.
 - Sensitivity in brightness temperature **K** (extended emission) gets WORSE as (Max.Baseline) squared, for the same collecting area i.e. roughly as (d/D)²
 - 100-meter single dish: ~2 K/Jy
 - 1-mile max baseline aperture synthesis telescope: ~1600 K/Jy
- Ability to map very extended areas quickly (see survey speed)
- May provide large collecting area with manageable electronic complexity
- Simplicity: One receiver, not N receivers, nor N.(N-1)/2 correlations
- BUT *relatively* easy to implement large imaging arrays, including bolometers, which can increase mapping speed by orders of magnitude.
- Multi-frequency receivers relatively easy investment
- Flexibility:
- Relative ease of upgrading, customizing hardware to an experiment
- Relative ease of implementing radar tx systems
- A single large dish can add significant sensitivity to (e.g.) VLBI arrays
- Software possibly simpler: "Conceptually" easier to understand for novice astronomers. (But this is inexcusable!)

Practical Single Dish vs. Interferometer issues

- Single dishes have limited response to high spatial frequencies
- Mechanical complexity replaces electronic complexity
- Susceptibility to instrumental drifts in gain and noise no correlation advantage of interferometers
- Interferometers can *in principle* give high sensitivity and high total collecting area.
- Aperture synthesis imaging is a form of multi-beaming arguably obtaining more information from the radiation falling on a telescope than is possible with a single dish.

Single Dishes are good for...

 Pulsar observations, e.g. >99% of known pulsars have been found with single dishes

Large-area/large structure surveys:

Point sources:

And much more...!

This week ...

- A series of lectures, real observing, hands-on and tutorials
- Coverage of (nearly) all topics related to single-dish
- Insight into current research
- Lecturer & tutors by experts from
 - Argelander Institut der Universität Bonn
 - Jodrell Bank Centre for Astrophysics, University of Manchester
 - INAF/Osservatorio Astronomico di Cagliari, Sardinia
 - MPI für Radioastronomie

• Hopefully, a lot of fun also...!

"We sent a message to any extraterrestrial beings in deep space. It was picked up by an observatory in Great Britain. They didn't understand it."

- Thermal vs. non-thermal emission
- Free-free emission (thermal bremsstrahlung)
- Synchrotron emission
- Radiation transfer (self-absorption)
- Pulsars and their radiation
- Spectral lines
- HI emission

• Others: supernova remnants, radio galaxies, pulsars etc.

Sources of Radio Emission

• Electromagnetic emission (and hence radio!) is produced by the acceleration of charged particles or atomic transitions:

• We distinguish between thermal and non-thermal emission.

Thermal vs. Non-thermal Emission

- Thermal processes:
- Energy distribution of particles is thermal,
- i.e. it can be described simply by temperature
- Usually: blackbody

thermal bremsstrahlung

Non-thermal processes:

Energy distribution of particles is not thermal, e.g. relativistic particles

- Usually: non-thermal bremsstrahlung
 - inverse Compton scattering
 - synchrotron radiation

Thermal Emission

• Blackbody radiation: see JK's lecture, e.g. thermal emission from dust

Thermal Emission

- Blackbody radiation: see JK's lecture, e.g. thermal emission from dust
- Free-free emission = "Thermal Bremsstrahlung"

Charged particle slows down by emitting photon Particle is unbound (free) before and after Important for hot ionized gas where electrons move in field of ionized atoms

Thermal Emission

- Blackbody radiation: see JK's lecture, e.g. thermal emission from dust
- Free-free emission = "Thermal Bremsstrahlung"

- Blackbody radiation: see JK's lecture, e.g. thermal emission from dust
- Free-free emission = "Thermal Bremsstrahlung"

Thermal Emission

- Blackbody radiation: see JK's lecture, e.g. thermal emission from dust
- Free-free emission = "Thermal Bremsstrahlung" Examples:

HII regions

Hot gas in cluster of galaxies

Thermal Emission

- Blackbody radiation: see JK's lecture, e.g. thermal emission from dust
- Free-free emission = "Thermal Bremsstrahlung" Examples:

- Thomson (CMB!) and Compton scattering: mostly high energy
- Synchrotron emission:

- Thomson (CMB!) and Compton scattering: mostly high energy
- Synchrotron emission:

Cassiopeia A (Cas A)

- Thomson (CMB!) and Compton scattering: mostly high energy
- Synchrotron emission:

- Thomson (CMB!) and Compton scattering: mostly high energy
- Synchrotron emission:

Synchrotron Emission

Max-Planck-Institut für Radioastronomie

Copyright: MPIfR Bonn (R.Beck, E.M.Berkhuijsen & P.Hoernes)

MAX-PLANCK-GESELLSCHAFT

- Thomson (CMB!) and Compton scattering: mostly high energy
- Synchrotron emission:

Mildly relativistic motion

Mildly relativistic motion

For faster e⁻, even sharper pulses:

Figure 18.3. The spectrum of emission of the first 20 harmonics of mildly relativistic cyclotron radiation. The electron has v = 0.4c. (After G. Bekafi (1966). *Radiation processes in plasmas*, p. 203. New York: John Wiley and Sons, Inc.)

Single relativistic electron: synchrotron emission

Spectrum of primary Cosmic Ray

 Observed Galactic synchrotron emission produced by cosmic ray electrons with a relativistic energy distribution

 $N(E)dE = \kappa E^{-p}dE$

In general:

Particles (2% electrons, 98% protons and atomic nuclei)

Gamma-ray photons produced in collisions of high energy particles

Origin: accelerators, e.g. SNRs

Synchrotron Emission: Polarization

Copyright: MPIfR Bonn (R.Beck, C.Horellou & N.Neininger)

- Emission is linearly polarized perpendicular to B-field
- maximum degree of polarisation: I
- Observed degree usually lower: in-beam depolarisation

$$\Pi = \frac{p+1}{p+7/3} \approx 72\%$$

Dust in the ISM

The "Black Cloud" B68

(VLT ANTU + FORS1)

ESO PR Photo 20a/99 (30 April 1999)

Õ © European Southern Observatory

But ISM not only absorbs but also emits...

Emitting warm interstellar medium:

Emitting plasma in Orion Nebula

Pulsars

Single pulses are different

...but average pulse shape is stable

Profile determined by line-of-sight

Straw-man design of a pulsar model

rotation induces electric quadrupole field

$$F_{el} / F_{grav} = 10^{12}$$

charges pulled out of surface, shielding force plasma fills surrounding corotation with pulsar light cylinder: $v=R_L\Omega=c$

open and closed fieldlines

coherent emission, T_b>10³¹K MASER emission?

- Pulsars have a steep spectrum (mean: $v^{-1.7}$)
- Maximum intensity around 400 MHz
- Emission is up to 100% polarised

Max-Planck-Institut für Radioastronomie

Spectral line emission

- Unlike the continuum processes spectral line emission occurs only at specific discrete frequencies.
- Line emission involves changes in the internal energy of atoms and molecules that have very specific allowed (quantised) values.

Max-Planck-Institut für Radioastronomie

Neutral Hydrogen Line

Declination (J2000)

- More about spectral lines later...
- Now, we know how the sources look like, let's see how you measure them

